The helC gene encodes a putative DEAD-box RNA helicase required for development in Dictyostelium discoideum
نویسندگان
چکیده
DEAD-box RNA helicases, defined by the sequence Asp-Glu-Ala-Asp (DEAD, in single-letter amino-acid code), regulate RNA unwinding and secondary structure in an ATP-dependent manner in vitro [1] and control mRNA stability and protein translation. Both yeast and mammals have large families of DEAD-box proteins, many of unknown function. We have disrupted a Dictyostelium discoideum gene, helC, which encodes helicase C, a member of the DEAD-box family of RNA helicases that shows strong homology to the product of the essential Saccharomyces cerevisiae gene dbp5 [2] and to related helicases in mouse and Schizosaccharomyces pombe. The HelC protein also shows weaker homology to the translation initiation factor elF-4a. Other DEAD-box-containing proteins, which are less closely related to HelC, have been implicated in developmental roles in Drosophila [3] and Xenopus laevis; one example is the Xenopus Vasa-like protein (XVLP) [4-6]. In Drosophila and Xenopus, Vasa and XVLP, respectively, are required for the establishment of tissue polarity during development. In yeast, DEAD-box helicases such as Prp8 [7] are components of the spliceosome and connect pre-mRNA splicing with the cell cycle. Disruption of the helC gene in D. discoideum led to developmental asynchrony, failure to differentiate and aberrant morphogenesis. We postulate that one reason for the existence of large families of homologous DEAD-box proteins in yeast, mammals and Dictyostelium could be that some DEAD-box proteins have developmentally specific roles regulating protein translation or mRNA stability.
منابع مشابه
The Drosophila gene abstrakt, required for visual system development, encodes a putative RNA helicase of the DEAD box protein family
The molecular mechanisms underlying axonal pathfinding are not well understood. In a genetic screen for mutations affecting the projection of the larval optic nerve we isolated the abstrakt locus. abstrakt is required for pathfinding of the larval optic nerve, and it also affects development in both the adult visual system and the embryonic CNS. Here we report the molecular characterization of ...
متن کاملAn evolutionarily conserved, alternatively spliced, intron in the p68/DDX5 DEAD-box RNA helicase gene encodes a novel miRNA.
The DEAD-box RNA helicase p68 (DDX5) plays important roles in several cellular processes, including transcription, pre-mRNA processing, and microRNA (miRNA) processing. p68 expression is growth and developmentally regulated, and alterations in p68 expression and/or function have been implicated in tumor development. The p68 gene encodes an evolutionarily conserved, alternatively spliced, intron...
متن کامل18S rRNA processing requires the RNA helicase-like protein Rrp3.
We report the identification of a new gene, RRP3 (rRNA processing), which is required for pre-rRNA processing. Rrp3 is a 60.9 kDa protein that is required for maturation of the 35S primary transcript of pre-rRNA and is required for cleavages leading to mature 18S RNA. RRP3 was identified in a PCR screen for DEAD box genes. DEAD box genes are part of a large family of proteins homologous to the ...
متن کاملDbp10p, a putative RNA helicase from Saccharomyces cerevisiae, is required for ribosome biogenesis.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein...
متن کاملMolecular characterization of DDX26, a human DEAD-box RNA helicase, located on chromosome 7p12.
DEAD-box proteins comprise a family of ATP-dependent RNA helicases involved in several aspects of RNA metabolism. Here we report the characterization of the human DEAD-box RNA helicase DDX26. The gene is composed of 14 exons distributed over an extension of 8,123 bp of genomic sequence and encodes a transcript of 1.8 kb that is expressed in all tissues evaluated. The predicted amino acid sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998